
OpenPPL Documentation
Release 0.1.0

All contributors

October 25, 2015

Contents

1 Basics 3
1.1 Terminologies . 3
1.2 Getting Started: Gaussian Mixture Model . 4
1.3 Generic Specification: Finite Mixture Model . 5
1.4 Queries . 5

2 More Examples 9
2.1 Latent Dirichlet Allocation . 9
2.2 Hidden Markov Model . 10
2.3 Markov Random Fields . 12
2.4 Conditional Random Fields . 14
2.5 Deep Boltzmann Machines . 15

3 Nonparametric Models 19
3.1 Dirichlet Process Mixture Model . 19
3.2 Hierarchical Dirichlet Processes . 20
3.3 Gaussian Processes . 21

4 The Inference Framework 23
4.1 Gaussian Mixture Model Revisited . 23
4.2 Inference via Message Passing . 25

i

ii

OpenPPL Documentation, Release 0.1.0

This document proposes the design of OpenPPL, an open source probabilistic programming framework implemented
as a domain-specific language on top of Julia. This document discusses the design of basic language constructs for
model specification, query, as well as directives to control algorithmic choices in inference.

Contents:

Contents 1

OpenPPL Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Basics

OpenPPL is a domain-specific language built on top of Julia using macros. The language consists of two parts: model
specification and query. In particular, a model specification formalizes a probabilistic model, which involves declaring
variables and specifying relations between them; while a query specifies what is given and what is to be inferred.

1.1 Terminologies

Here is a list of terminologies that would be involved in the description.

Variable A variable generally refers to an entity that can take a value of certain type. It can be a random variable
directly associated with a distribution, a deterministic transformation of another variable, or just some value
given by the user. The value of a variable can be given or unknown.

Constant A value that is fixed when a query is constructed and fixed throughout the inference procedure. A con-
stant is typically used to represent vector dimensions, model sizes, and hyper-parameters etc. Note that model
parameters are typically considered as variables instead of constants. For example, a learning process can be
formulated as a query that solves the parameter given a set of observations, where the parameter values can be
iteratively updated.

Domain The domain of a variable refers to the set of possible values that it may take. Any Julia type (e.g. Int,
Float64) can be considered as a domain that contains any value of that type. This package also supports array
domains and restrictive domains that contain only a subset of a specific type. Here are some examples:

1 1..K # integers between 1 and K
2 0.0..Inf # all non-negative real values
3 Float64^n # n-dimensional real vectors
4 Float64^(m,n) # matrices of size (m, n)
5 (0.0..1.0)^m # m-dimensional real vectors with all components in [0., 1.]

Distribution From a programmatic standpoint, a distribution can be considered as a stochastic function that yields
a random value in some domain. A distribution can accept zero or more arguments. A distribution should be
stochastically pure, meaning that it always outputs the same value given the same arguments and the same state
of the random number generator. Such purity makes it possible to reason about program structure and transform
the model from one form to another.

Factor A factor is a pure real-valued function. Here, “pure” means that it always output the same value given the
same inputs. Factors are the core building blocks of a probabilistic model. A complex distribution is typically
formulated as a set of variables connected by factors. Even a simple distribution (e.g. normal distribution)
consists of a factor that connects between generated variables and parameters (which may be considered as a
variable with fixed value).

3

OpenPPL Documentation, Release 0.1.0

1.2 Getting Started: Gaussian Mixture Model

Here, we take the Gaussian Mixture Model as an example to illustrate how we can specify a probabilistic model using
this Julia domain-specific language (DSL). A Gaussian Mixture Model is a generative model that combines several
Gaussian components to approximate complex distributions (e.g. those with multiple modals.). A Gaussian mixture
model is characterized by a prior distribution 𝜋 and a set of Gaussian component parameters (𝜇1,Σ1), . . . , (𝜇𝐾 ,Σ𝐾).
The generative process is described as follows:

𝑧𝑖 ∼ 𝜋

𝑥𝑖|𝑧𝑖 ∼ 𝒩 (𝜇𝑧𝑖 ,Σ𝑧𝑖)

1.2.1 Model Specification

The model specification is given by

1 @model GaussianMixtureModel begin
2 # constant declaration
3 @constant d::Int # vector dimension
4 @constant n::Int # number of observations
5 @hyperparam K::Int # number of components
6

7 # parameter declaration
8 @param pi :: (0.0..1.0)^K # prior proportions
9 for k in 1 : K

10 @param mu[k] :: Float64^d # component mean
11 @param sig[k] :: Float64^(d, d) # component covariance
12 end
13

14 # sample generation process
15 for i in 1 : n
16 z[i] ~ Categorical(pi)
17 x[i] ~ MultivariateNormal(mu[z[i]], sig[z[i]])
18 end
19 end

This model specification should be self-explanatory. However, it is still worth clarifying several aspects:

• The macro @model defines a model type named GaussianMixtureModel, and creates an environment
(delimited by begin and end) for model formulation. All model types created by @model is a sub type of
AbstractModel.

• The macro @constant declares d, K, and n as constants. The values of these constants need not be given in
the specification. Instead, they are needed upon query. Particularly, to construct a model, one can write

mdl = GaussianMixtureModel()

One can optionally fix the value of constants through keyword arguments in model construction, as below

mdl = GaussianMixtureModel(d = 2, K = 5)

Note: fixing constants upon model construction is generally unnecessary. However, it might be useful to fix
them under certain circumstances to to simplify queries or restrict its use. Once a constant is fixed, it need not
be specified again in the query.

• The macro @hyperparam declares hyper parameters. Hyper parameters are similar to constant technically,
except that they typically refer to model configurations that may be changed during cross validation.

4 Chapter 1. Basics

OpenPPL Documentation, Release 0.1.0

• Variables can be defined using the syntax as variable-name :: domain. A for-loop can be used to
declare multiple variables in the same domain. When the variable domain is clear from the context (e.g. the
domain of z and x can be inferred from where they are drawn), the declaration can be omitted.

• The macro @param tags certain variables to be parameters. The information will be used in the learning
algorithm to determine which variables are the parameters to estimate.

• The statement variable-name ~ distribution introduces a conditional distribution over variables,
which will be translated into a factor during model compilation.

1.3 Generic Specification: Finite Mixture Model

The Gaussian mixture model can be considered as a special case in a generic family called Finite mixture model.
Generally, the components of a finite mixture model can be arbitrary distributions. To capture the concept of generic
distribution family, we introduce generic specification (or parametric specification), which can take type arguments.

The specification of the generic finite mixture model is given by

1 @model FiniteMixtureModel{G, ParamTypes} begin
2 # constant declaration
3 @hyperparam K::Int
4 @constant n::Int
5

6 # parameter declaration
7 @param pi :: (0.0..1.0)^K # prior proportions
8 for k = 1 : K
9 for j = 1 : length(ParamTypes)

10 @param theta[k][j] :: ParamTypes[j]
11 end
12 end
13

14 # sample generation process
15 for i in 1 : n
16 z[i] ~ Categorical(pi)
17 x[i] ~ G(theta[z[i]]...)
18 end
19 end

One may consider a generic specification above as a specification template. To obtain a Gaussian mixture model
specification, we can use the @modelalias macro, as below:

1 @modelalias GaussianMixtureModel FiniteMixtureModel{G, ParamTypes} begin
2 @constant d::Int
3 @with G = MultivariateNormal
4 @with ParamTypes[1] = Float64^d # component mean
5 @with ParamTypes[2] = Float64^(d, d) # component covariance
6 end
7

8 mdl = GaussianMixtureModel()

The @modelalias macro allows introducing new constants and specializing the type parameters.

1.4 Queries

In machine learning, the most common queries that people would make include

1.3. Generic Specification: Finite Mixture Model 5

OpenPPL Documentation, Release 0.1.0

• learning: estimate model parameters

• prediction: predict the value or marginal distribution over unknown variables, given a learned model and ob-
served variables.

• evaluation: evaluate log-likelihood of observations with a given model

• sampling: draw a set of samples of certain variables

To simplify these common queries, we provide several functions.

1.4.1 Query

Query refers to the task of inferring the value or marginal distributions of unknown variables, given a set of known
variables.

1 function query(rmdl::AbstractModel, knowns::Associative, qlist::Array, options)
2 set_variables!(rmdl, knowns)
3 q = compile_query(rmdl, qlist, options) # this returns a query function q
4 return q() # runs the query function and returns the results
5 end
6

7 function query(rmdl::AbstractModel, knowns::Associative, q)
8 infer(rmdl, knowns, q, default_options(rmdl))
9 end

qlist is a list of variables or functions over variables that you want to infer. The function compile_query actually
performs model compilation, analyzing model structure, choosing appropriate inference algorithms, and generating a
closure q, which, when executed, actually performs the inference.

This query function here is very flexible. One can use it for prediction and sampling, etc.

1 # let rmdl be a learned model
2

3 # predict the value of z given observation x
4 z_values = query(rmdl, {:x=>columns(data)}, :z)
5

6 # infer the posterior marginal distributions over z given x
7 z_marginal = query(rmdl, {:x=>columns(data)}, :(marginal(z)))
8

9 # you can simultaneously infer only selected variables in a flexible way
10 r = query(rmdl, {:x=>columns(data)}, {:(z[1]), :(z[2]), :(marginal(z[3]))})
11

12 # draw 100 samples of z
13 samples = query(rmdl, {x:=>columns(data)}, :(samples(z, 100)))

Note that inputs to the function are symbols like :z or expressions like :(marginal(z)), which indicate what we
want to query. It is incorrect to pass z or marginal(z) – the value of z or marginal(z) is unavailable before
the inference.

1.4.2 Learning

Learning refers to the task of estimating model parameters given observed data. This can be considered as a special
kind of query, which infers the values of model parameters, given observed data.

1 function learn_model(mdl::AbstractModel, data::Associative, options)
2 rmdl = copy(mdl)
3 set_variables!(rmdl, data)

6 Chapter 1. Basics

OpenPPL Documentation, Release 0.1.0

4 q = compile_query(rmdl, parameters(rmdl), options)
5 set_variables!(rmdl, q())
6 return rmdl
7 end
8

9 function learn_model(mdl::AbstractModel, data)
10 learn_model(mdl, data, default_options(mdl))
11 end
12

13 # learn a GMM, a simple wrapper of learn_model
14 # suppose data is a d-by-n matrix
15 rmdl = learn_model(
16 GaussianMixtureModel(K = 3, d = size(data,1), n = size(data,2)),
17 {:x => columns(data)})

In the function learn_model, parameters(rmdl) returns a list of parameters as the query list. Then the
statement q = compile_query(rmdl, parameters(rmdl), options) returns a query function q, such
that q() executes the estimation procedure and returns the estimated model parameters. The following example shows
how we can use this function to learn a Gaussian mixture model.

1 function learn_gmm(data::Matrix{Float64}, K::Int)
2 learn_model(
3 GaussianMixtureModel(K = K, d = size(data,1), n = size(data,2)),
4 {:x => columns(data)})
5 end
6

7 rmdl_K3 = learn_gmm(data, 3)
8 rmdl_K5 = learn_gmm(data, 5)

Here, learn_gmm is a light-weight wrapper of learn_model.

1.4.3 Evaluation

Evaluation refers to the task of evaluating log-pdf of samples with respect to a learned model.

evaluate the logpdf of x with respect to a GMM
lp = query(rmdl, {:x=>columns(data)}, :(logpdf(x)))

1.4.4 Options

The compilation options that control how the query is compiled can be specified through the options argument in
the query or learn_model function. The following is some examples

rmdl = learn_model(mdl, data, {:method=>"variational_em", :max_iter=>100, :tolerance=1.0e-6})

For sampling, we may use a different set of options

options = {
:method=>"gibbs_sampling", # choose to use Gibbs sampling
:burnin=>5000, # the number of burn-in iterations
:lag=>100} # the interval between two samples to retain

samples = query(rmdl, {x:=>columns(data)}, :(samples(z, 100)), options)

1.4. Queries 7

OpenPPL Documentation, Release 0.1.0

1.4.5 Query Functions with Arguments

It is often desirable in practice that a query function can be applied to different data sets without being re-compiled.
For this purpose, we introduce a function make_query_function. The following example illustrates its use:

1 # suppose rmdl is a learned model
2

3 q = make_query_function(rmdl,
4 (:data,), # indicates that the function q would take one argument data
5 {:x=>:(columns(data))}, # indicates how the argument is set to the model as a known value
6 {:z}, # specifies what to query
7 options) # compilation options
8

9 # q can be repeatedly use for different datasets (without being re-compiled)
10 z1 = q(x1)
11 z2 = q(x2)

Note that q is a closure that holds reference to the learned model, so you don’t have to pass the model as an argument
into q. The following code use this mechanism to generate a sampler:

1 q = make_query_function(rmdl,
2 (:data, :n), # q would take two arguments, the observed data and the number of samples
3 {:x=>:(columns(data))},
4 {:sample(z, n)},
5 options)
6

7 # draw 100 samples of z
8 zs1 = q(x, 100)
9

10 # draw another 200 samples of z
11 zs2 = q(x, 200)

8 Chapter 1. Basics

CHAPTER 2

More Examples

This chapter shows several common examples to illusrate how the model specification DSL works in practice.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a probabilistic model for topic modeling. The basic idea is to use a set of topics
to describe documents. Key aspects of this model is summarized below:

1. Each document is considered as a bag of words, which means that only the frequencies of words matter, while
the sequential order is ignored. In practice, each document is summarized by a histogram vector ℎ.

2. The model comprises a set of topics. We denote the number of topics by 𝐾. Each topic is characterized by
a distribution over vocabulary, denoted by 𝛽𝑘. It is a common practice to place a Dirichlet prior over these
distributions.

3. Each document is associated with a topic proportion vector 𝜃, generated from a Dirichlet prior.

4. Each word in a document is generated independently. Specifically, a word is generated as follows

𝑧𝑖 ∼ 𝜃

𝑤𝑖|𝑧𝑖 ∼ 𝛽𝑧𝑖

Here, 𝑧𝑖 indicates the topic associated with the word 𝑤𝑖.

The model specification is then given by

1 @model LatentDirichletAllocation begin
2 # constants
3 @constant m::Int # vocabulary size
4 @constant n::Int # number of documents
5 @constant nw::Vector{Int} # numbers of words in documents
6

7 @hyperparam K::Int # number of topics
8 @hyperparam a::Float64 # Dirichlet hyper-prior for beta
9

10 # parameters
11 @param alpha :: (0.0 .. Inf)^K
12 for k in 1 : K
13 @param beta[k] ~ Dirichlet(a)
14 end
15

9

OpenPPL Documentation, Release 0.1.0

16 # documents
17 for i in 1 : n
18 theta[i] ~ Dirichlet(alpha)
19 let p = sum(beta[k] * theta[i][k] for k in 1 : K)
20 h[i] ~ Multinomial(nw[i], p)
21 end
22 end
23 end

Here, the keyword let introduces a local value p to denote the sum vector. It is important to note that p has a local
scope (thus it is not visible outside the loop), and the value of p can be different for different i.

The following function learns an LDA model from word histograms of training documents.

1 function learn_lda(h::Matrix{Double}, K::Int, alpha::Float64)
2 learn_model(LatentDirichletAllocation(
3 m = size(h, 1), n = size(h, 2), nw = sum(h, 1), K = K, a = alpha),
4 {:h => columns(h)})
5 end
6

7 mdl = learn_lda(training_hists, K, alpha)

The following statement infers topic proportions of testing documents, given a learned LDA model.

1 # suppose mdl is a learned LDA model
2 theta = query(mdl, {:h => columns(testing_corpus)}, :theta)

2.2 Hidden Markov Model

Hidden Markov Model (HMM) is a popular model to describe dynamic processes. It assumes that the observed process
is driven by a latent Markov chain, and the observation at each time step is independently generated conditioned on the
latent states at the same time. A time-homogeneous Markov model is characterized by an initial distribution of states,
denoted by 𝜋, a transition probability matrix, denoted by 𝑇 , and an observation model that generates observations
based on latent states. Each sample of a Hidden Markov model is a sequence 𝑥 = (𝑥0, . . . , 𝑥𝑛), where the observation
𝑥𝑡 is associated with a latent state 𝑠𝑡. The joint distribution over both the observations and the states is given by

𝑝(𝑥, 𝑠) = 𝜋(𝑥0)

𝑛∏︁
𝑡=1

𝑇 (𝑥𝑡−1, 𝑥𝑡)

𝑛∏︁
𝑡=0

𝑝(𝑥𝑡|𝑠𝑡; 𝜃).

Here, 𝜃 denotes the parameter of the observation model.

Generally, the component models associated with the observations can be any distributions. Therefore, HMM is
actually a family of distributions that can be specified using a generic specification, as below:

1 @model HiddenMarkovModel{G, ParamTypes} begin
2 @constant n::Int # number of sequences
3 @constant len::Vector{Int} # the sequence lengths
4 @hyperparam K::Int # the size of latent state space
5

6 # parameters
7 @param pi :: (0.0 .. 1.0)^K # initial distribution
8 @param T :: (0.0 .. 1.0)^(K, K) # transition probability matrix
9

10 for k in 1 : K

10 Chapter 2. More Examples

OpenPPL Documentation, Release 0.1.0

11 for j in 1 : length(ParamTypes)
12 @param theta[k][j] :: ParamTypes[j]
13 end
14 end
15

16 # sequences
17 for i in 1 : n
18 z[i][1] ~ Categorical(pi)
19 for t = 2 : len[i]
20 z[i][t] ~ Categorical(T[z[t-1], :])
21 end
22

23 for t in 1 : len[i]
24 let s = z[i][t]
25 x[i][t] ~ G(theta[s]...)
26 end
27 end
28 end
29 end

To construct an HMM with K Gaussian components, one can write:

1 @modelalias HiddenMarkovGaussModel HiddenMarkovModel{G, Params} begin
2 @constant d::Int # vector space dimension
3 @with G = MultivariateNormal
4 @with Params[1] = Float64^d
5 @with Params[2] = Float64^(d, d)
6 end

The following query function learns a HMM (with Gaussian components):

1 function learn_hmm(seqs, K::Int)
2 # seqs is a collection of observed sequences
3 # K is the number of latent states
4

5 learn_model(HiddenMarkovGaussModel(
6 n = length(seqs), len = map(length, seqs), K = K),
7 {:x => seqs})
8 end
9

10 mdl = learn_hmm(seqs, K)

The following query draws samples of the latent state sequences, given a learned HMM model and a sequences of
observations.

1 function hmm_sample(mdl::HiddenMarkovGaussModel, obs::Matrix{Float64}, ns::Int)
2 # obs is a sequence of observed features (each column for a time step)
3 # ns is the number of samples to d
4

5 query(mdl, {:x => obs}, :(sample(z, ns)))
6 end
7

8 # run the function to draw 100 sample state-sequendes for x
9 x = rand(3, 100)

10 y = hmm_sample(mdl, x, 100)

2.2. Hidden Markov Model 11

OpenPPL Documentation, Release 0.1.0

2.3 Markov Random Fields

Unlike Bayesian networks, which can be factorized into a product of (conditional) distributions, Markov random
fields are typically formulated in terms of potentials. Generally, a MRF formulation consists of two parts: identifying
relevant cliques (small subsets of directly related variables) and assigning potential functions to them. In computer
vision, Markov random fields are widely used in low level vision tasks, such as image recovery and segmentation.
Deep Boltzmann machines, which become increasingly popular in recent years, are actually a special form of Markov
random field. Here, we use a simple MRF model in the context of image denoising to demonstrate how one can use
the model specification to describe an MRF.

From a probabilistic modeling standpoint, the task of image denoising can be considered as an inference problem
based on an image model combined with an observation model. An image model captures the prior knowledge as
to what an clean image may look like, while the observation model describes how the observed image is generated
through a noisy imaging process. Here, we consider a simple setting: Gaussian MRF prior + white noise. A classical
formulation of Gaussian MRF for image modeling is given below

𝑝(𝑥) =
1

𝑍
exp (−𝐸(𝑥; 𝜃)) .

Here, the distribution is formulated in the form of a Gibbs distribution, and 𝐸(𝑥; 𝜃) is the energy function, which
is controlled by a parameter $theta$. The energy function $E(x; theta)$ can be devised in different ways. A typical
design would encourage smoothness, that is, assign low energy value when the intensity values of neighboring pixels
are close to each other. For example, a classical formulation uses the following energy function

𝐸(𝑥; 𝜃) = 𝜃
∑︁

{𝑢,𝑣}∈𝒞

(𝑥(𝑢) − 𝑥(𝑣))2

Here, 𝑢 and 𝑣 are indices of pixels, and the clique set $cset$ contains all edges between neighboring pixels. With the
white noise assumption, the observed pixel values are given by

𝑦(𝑢) = 𝑥(𝑢) + 𝜀(𝑢), with 𝜀(𝑢) ∼ 𝒩 (0, 𝜎2).

Below is the specification of the joint model:

1 @model SimpleMRF begin
2 @constant nimgs::Int # the number of images
3 @constant imgsizes::Vector{(Int, Int)}
4

5 # parameters
6 @param theta::Float64 # the Gaussian MRF parameter
7 @param sig::Float64 # the variance of white noise
8

9 for t in 1 : nimgs
10 let m = imgsizes[t][1], n = imgsizes[t][2]
11 x[t]::Float64^(m, n) # the true image
12 y[t]::Float64^(m, n) # the observed noisy image
13

14 let xt = x[t], yt = y[t]
15 # the image prior (Gaussian MRF)
16 for i in 2 : m-1, j in 2 : n-1
17 @fac exp(-theta * (xt[i,j] - xt[i,j-1])^2)

12 Chapter 2. More Examples

OpenPPL Documentation, Release 0.1.0

18 @fac exp(-theta * (xt[i,j] - xt[i,j+1])^2)
19 @fac exp(-theta * (xt[i,j] - xt[i-1,j])^2)
20 @fac exp(-theta * (xt[i,j] - xt[i+1,j])^2)
21 end
22

23 # the observation model
24 for i in 1 : m, j in 1 : n
25 yt[i,j] ~ Normal(xt[i,j], sig)
26 end
27 end
28 end
29 end
30 end

The following statement learns the model from a set of uncorrupted images

suppose imgs is an array of images
mdl = learn_model(SimpleMRF(nimgs=length(imgs), imgsizes=map(size, imgs)), {:x=>imgs})

In this specification, four potentials are used to connect a pixel to its left, right, upper, and lower neighbors. This
approach would become quite cumbersome as the neighborhood grows. Many state-of-the-art denoising algorithms
use mucher larger neighborhood (e.g. 5 x 5, 9 x 9, etc) to capture high order texture structure. A representative
example is the Field of Experts, where the MRF prior is defined using a set of filters as follows:

𝑝(𝑥) =
1

𝑍
exp

(︃
𝐾∑︁

𝑘=1

∑︁
𝑐∈𝒞

𝜌(𝐽𝑇
𝑘 𝑥𝑐, 𝛼𝑘)

)︃
, with 𝜌(𝑣, 𝛼) := −𝛼 log(1 + 𝑣2).

Here, 𝒞 is the set of all patches of certain size (say $5 times 5$), and x_c is the pixel values over a small patch 𝑐.
Here, 𝐾 filters 𝐽1, . . . , 𝐽𝐾 are used, and 𝐽𝑇

𝑘 𝑥𝑐 is the filter response at patch 𝑐. 𝜌 is a robust potential function that
maps the filter responses to potential values, controlled by a parameter 𝛼. The specification below describes this more
sophisticated model, where local functions and local variables are used to simplify the specification.

1 @model FieldOfExperts begin
2 @constant K::Int # the number of filters
3 @constant w::Int # patch size (w = 5 for 5 x 5 patches)
4 @constant ew::Int = (w - 1) / 2 # half patch dimension
5 @constant nimgs::Int # the number of images
6 @constant imgsizes::Vector{(Int, Int)}
7 @constant sig :: Float64 # variance of white noise
8

9 # parameters
10 for k = 1 : K
11 @param J[k] :: Float64^(w, w) # filter kernel
12 @param alpha[k] :: Float64 # filter coefficient
13 end
14

15 # the robust potential function
16 rho(v, a) = -a * log(1 + v * v)
17

18 for t in 1 : nimgs
19 let m = imgsizes[t][1], n = imgsizes[t][2]
20 x[t]::Float64^(m, n) # the true image
21 y[t]::Float64^(m, n) # the observed noisy image
22

23 let xt = x[t], yt = y[t]
24 # the image prior

2.3. Markov Random Fields 13

OpenPPL Documentation, Release 0.1.0

25 for k in 1 : K, i in 1+ew : m-ew, j in 1+ew : n-ew
26 let c = vec(xt(i-ew:i+ew, j-ew:j+ew))
27 @fac exp(rho(dot(J[k], c), alpha[k]))
28 end
29 end
30

31 # the observation model
32 for i in 1 : m, j in 1 : n
33 yt[i,j] ~ Normal(xt[i,j], sig)
34 end
35 end
36 end
37 end
38 end

Below is a query function that learns a field-of-experts model.

1 function learn_foe(imgs, w::Int, K::Int)
2 # imgs: an array of images
3 # w: the patch dimension
4 # K: the number of filters
5

6 mdl = FieldOfExpers(
7 K = K, w = w, nimgs = length(imgs),
8 imgsize = map(size, imgs))
9

10 learn_model(mdl, {:x=>imgs})
11 end

Given a learned model, the following query function performs image denosing.

1 function foe_denoise(mdl::FieldOfExperts, sig::Float64, noisy_im::Matrix{Float64})
2 # sig: the noise variance (which is typically given in denoising tasks)
3 # noisy_im: the observed noisy image
4

5 query(mdl, {:sig=>sig, :y=>[noisy_im]}, :x)
6 end
7

8 denoised_im = foe_denoise(mdl, 0.1, noisy_im)

2.4 Conditional Random Fields

Structured prediction, which exploits the statistical dependencies between multiple entities within an instance, has
become an important area in machine learning and related fields. Conditional random field is a popular model in this
area. Here, I consider a simple application of CRF in computer vision. A visual scene usually comprises multiple
objects, and there exist statistical dependencies between the scene category and the objects therein. For example, a
bed is more likely in the bedroom than in a forest. A conditional random field that takes advantage of such relations
can be formulated as follows

𝑝(𝑠, 𝑜|𝑥, 𝑦) =
1

𝑍(𝛼, 𝛽, 𝜃)
exp

(︃
𝜓𝑠(𝑠, 𝑥;𝛼) +

𝑛∑︁
𝑖=1

𝜓𝑜(𝑜𝑖, 𝑦𝑖;𝛽) +

𝑛∑︁
𝑖=1

𝜙(𝑠, 𝑜𝑖; 𝜃)

)︃

This formulation contains three potentials:

14 Chapter 2. More Examples

OpenPPL Documentation, Release 0.1.0

• 𝜓𝑠(𝑠, 𝑥;𝛼) := 𝛼𝑇
𝑠 𝑥 connects the scene class s to the observed scene feature x,

• 𝜓𝑜(𝑜𝑖, 𝑦𝑖;𝛽) := 𝛽𝑇
𝑜 𝑦𝑖 connects the object label o_i to the corresponding object feature 𝑦𝑖,

• 𝜙(𝑠, 𝑜𝑖; 𝜃) := 𝜃(𝑠, 𝑜𝑖) captures the statistical dependencies between scene classes and object classes.

In addition, 𝑍 is the normalization constant, whose value depends on the parameters 𝛼, 𝛽, and 𝜃. Below is the model
specification:

1 @model SceneObjectCRF begin
2 @constant M::Int # the number of scene classes
3 @constant N::Int # the number of object classes
4 @constant p::Int # the scene feature dimension
5 @constant q::Int # the object feature dimension
6 @constant nscenes # the number of scenes
7 @constant nobjs::Vector{Int} # numbers of objects in each scene
8

9 for k in 1 : M
10 @param alpha[k] :: Float64^p
11 end
12 for k in 1 : N
13 @param beta[k] :: Float64^q
14 end
15 @param theta :: Float64^(p, q)
16

17 for i in 1 : nscenes
18 let n = nobjs[i]
19 s[i] :: 1 .. M # the scene class label
20 o[i] :: (1 .. N)^n # the object class labels
21 x[i] :: Float64^p # the scene feature vector
22

23 for j in 1 : n
24 y[i][j] :: Float64^q # the object features
25 end
26

27 @fac dot(alpha[s[i]], x)
28 for j in 1 : n
29 let k = o[i][j]
30 @expfac dot(beta[k], y[i][j])
31 @expfac theta[s[i], k]
32 end
33 end
34 end
35 end
36 end

Note here that @expfac f(x) is equivalent to @fac exp(f(x)). The introduction of @expfac is to simplify
the syntax in cases where factors are specified in log-scale.

2.5 Deep Boltzmann Machines

A Boltzmann machine (BM) is a generative probabilistic model that describes data through hidden layers. In particular,
a deep belief network and a deep Boltzmann machine, which becomes increasingly popular in machine learning and
its application domains, can be constructed by stacking multiple layers of BMs. In a generic Boltzmann machine, the
joint distributions over both hidden units h and visible units v are given by

2.5. Deep Boltzmann Machines 15

OpenPPL Documentation, Release 0.1.0

𝑝(v,h; 𝜃) =
1

𝑍(𝜃)
exp

(︂
1

2
v𝑇Lv +

1

2
h𝑇Jh + v𝑇Wh

)︂

When L and J are zero matrices, this reduces to a restricted Boltzmann machine. By stakcing multiple layers of BMs,
we obtain a deep Boltzmann machine as follows

𝑝(v,h; 𝜃) =
1

𝑍
exp

(︃
1

2
v𝑇Lv + v𝑇W0h1 +

𝐿∑︁
𝑙=1

h𝑇
𝑙 J𝑙h𝑙 +

𝐿−1∑︁
𝑙=1

h𝑇
𝑙 W𝑙h𝑙+1

)︃

This probabilistic network, despite its complex internal structure, can be readily specified using the DSL as below

1 @model DeepBoltzmannMachine begin
2 @hyperparam L::Int # the number of latent layers
3 @hyperparam nnodes::Vector{Int} # the number of nodes in each layer
4 @constant d::Int # the dimension of observed sample
5 @constant n::Int # the number of observed samples
6

7 # declare coefficient matrices
8 @param L :: Float64^(d, d)
9 @param W0 :: Float64^(d, nnodes[1])

10

11 for k = 1 : L
12 @param J[k] :: Float64^(nnodes[k], nnodes[k])
13 end
14

15 for k = 1 : L-1
16 @param W[k] :: Float64^(nnodes[k], nnodes[k+1])
17 end
18

19 # declare of variables
20 for i = 1 : n
21 obs[i] :: Float64^d
22 for k = 1 : L
23 latent[i][k] :: Float64^(nnodes[k])
24 end
25 end
26

27 # samples
28 for i = 1 : n
29 let h = samples[i], v = obs[i]
30 # intra-layer connections
31 @expfac v' * L * v
32

33 for k = 1 : L
34 @expfac h[k]' * J[k] * h[k]
35 end
36

37 # inter-layer connections
38 @expfac v' * W0 * h[1]
39

40 for k = 1 : L-1
41 @expfac h[k]' * W[k] * h[k+1]
42 end
43 end

16 Chapter 2. More Examples

OpenPPL Documentation, Release 0.1.0

44 end
45 end

To learn this model from a set of samples, one can write

1 function learn_deepbm(x::Matrix{Float64}, nnodes::Vector{Int})
2 # each column of x is a sample
3 # nnodes specifies the number of nodes at each layer
4

5 learn_model(DeepBoltzmannMachine(L = length(nnodes), nnodes=nnodes,
6 d=size(x,1), n=size(x,2)), {:obs=>columns(x)})
7 end
8

9 mdl = learn_deepbm(x, [100, 50, 20])

2.5. Deep Boltzmann Machines 17

OpenPPL Documentation, Release 0.1.0

18 Chapter 2. More Examples

CHAPTER 3

Nonparametric Models

Bayesian nonparametric models, such as DP mixture models, provide a flexible approach in which model structure
(e.g. the number of components) can be adapted to data. The capability and effectiveness of such models have been
proven in many applications.

This flexibility, however, leads to new questions to probabilistic programming – how to express models whose
size/structure can vary. The Julia macro system makes it possible to address this problem in an elegant way due
to is lazy evaluation nature.

3.1 Dirichlet Process Mixture Model

Dirichlet process mixture model (DPMM) is one of the most widely used in Bayesian nonparametrics. The formulation
of DPMM is given by

𝐷 ∼ 𝐷𝑃 (𝛼𝐵)

𝜃𝑖 ∼ 𝐷, 𝑥𝑖 ∼ 𝐺(𝜃𝑖), ∀𝑖 = 1, 2, . . . , 𝑛

Here, 𝛼 is the concentration paramater, 𝐵 is the base measure, and 𝐺 denotes the component models that generate the
observed samples. The model specification for a DPMM is given as below. It has been shown that 𝐷 is almost surely
discrete, and can be expressed in the followin form:

𝐷 =

∞∑︁
𝑘=1

𝜋𝑘𝛿𝜑𝑘

Hence, there exists positive probability that some of the components will be repeatedly sampled, and thus the number
of distinct components is usually smaller than the number of samples. In practice, it is useful to construct a pool of
components 𝜑1, 𝜑2, . . ., and introduce an indicator 𝑧𝑖 for each sample 𝑥𝑖, such that 𝜃𝑖 = 𝜑𝑧𝑖 . To make this explicit,
we can reformulate the model as below

𝜋 ∼ 𝑆𝑡𝑖𝑐𝑘𝐵𝑟𝑒𝑎𝑘(𝛼)

𝜑𝑘 ∼ 𝐵, ∀𝑘 = 1, 2, . . .

𝑧𝑖 ∼ 𝜋, 𝑥𝑖 ∼ 𝐺(𝜑𝑧𝑖), ∀𝑖 = 1, 2, . . . , 𝑛

Here, \pi, a sample from the stick breaking process, is an infinite sequence that sums to unity (i.e.
∑︀∞

𝑖=1 𝜋𝑖 = 1).
The values of 𝑝𝑖 are defined as

19

OpenPPL Documentation, Release 0.1.0

𝑣𝑘 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼), ∀𝑘 = 1, 2, . . .

𝜋1 = 𝑣1, 𝜋𝑘 = 𝑣𝑘

𝑘−1∏︁
𝑙=1

(1 − 𝑣𝑙), ∀𝑘 = 1, 2, . . .

The model specification for this formulation is given below

@model DPMixtureModel{B, G} begin
@constant n::Int # the number of observed samples
@hyperparam alpha::Float64 # the concentration parameter

pi ~ StickBreak(alpha)
for k = 1 : Inf

phi[k] ~ B
end

samples
for i = 1 : n

z[i] ~ pi
x[i] ~ G(phi[z[i]])

end
end

Remarks:

• The parametric setting makes it possible to use arbitrary base distribution 𝐵 and component 𝐺 here, with the
same generic formulation.

• In theory, 𝜋 is an infinite sequence, and therefore it is not feasible to completely instantiate a sample path of 𝜋 in
computer. This variable may be marginalized out in the inference, and thus directly querying 𝜋 is not allowed.

• 𝜑 has infinitely many components. However, only a finite number of them are needed in inference. The compiler
should generate a lazy data structure that only memorizes the subset of components needed during the inference.
In particular, phi[k] is constructed and memorized when there is an i such that k = z[i]. Some efforts
(e.g. the LazySequences.jl) have demonstrated that lazy data structure can be implemented efficiently in Julia.

3.2 Hierarchical Dirichlet Processes

HDP is an extension of the DP mixture models, which allows groups of data to be modeled by different DPs that share
components. The formulation of HDP is given below

𝐷0 ∼ 𝐷𝑃 (𝛼𝐵)

𝐷𝑘 ∼ 𝐷𝑃 (𝛾𝑘𝐷0)

𝜃𝑘𝑖 ∼ 𝐷𝑘, 𝑥𝑘𝑖 ∼ 𝐺(𝜃𝑘𝑖), ∀𝑘 = 1, . . . ,𝑚, 𝑖 = 1, . . . , 𝑛𝑘

Using 𝐷0 as a base measure for the DP associated with each group, all groups share components in 𝐷0 while allow-
ing potentially infinite number of components. This formulation can be re-written (equivalently) using Pitman-Yor
process, as follows

𝜋0 ∼ 𝑆𝑡𝑖𝑐𝑘𝐵𝑟𝑒𝑎𝑘(𝛼)

𝜓𝑗 ∼ 𝐵, ∀𝑗 = 1, 2, . . .

20 Chapter 3. Nonparametric Models

OpenPPL Documentation, Release 0.1.0

Then for each 𝑘 = 1, . . . ,𝑚,

𝜋𝑘 ∼ 𝑆𝑡𝑖𝑐𝑘𝐵𝑟𝑒𝑎𝑘(𝛾𝑘)

𝑢𝑘𝑡 ∼ 𝜋0, 𝜑𝑘𝑡 = 𝜓𝑢𝑘𝑡
, 𝑡 = 1, 2, . . .

𝑧𝑘𝑖 ∼ 𝜋𝑘, 𝑥𝑘𝑖 ∼ 𝐺(𝜑𝑘𝑧𝑘𝑖
), 𝑖 = 1, 2, . . . , 𝑛𝑘

Here is a brief description of this procedure:

1. To generate 𝐷0, we first draw an infinite multinomial distribution 𝜋0 from a Pitman-Yor process with concen-
tration parameter 𝛼, and draw each component 𝜓𝑗 from 𝐵. Then 𝐷0 =

∑︀∞
𝑗=1 𝜋𝑗𝜓𝑗 .

2. Then for each group (say the k-th one), we draw 𝜋𝑘 from a stick breaking process and draw each component
from 𝐷0. Note that drawing a component 𝜑𝑘𝑡 from 𝐷0 is equivalent to choosing one of the atoms in 𝐷0, which
can be done in two steps: draw 𝑢𝑘𝑡 from 𝜋0 and then set 𝜑𝑘𝑡 = 𝜓𝑢𝑘𝑡

. In other words, the 𝑡-th component in the
𝑘-th group is identical to the 𝑢𝑘𝑡-th component in 𝐷0.

3. Finally, to generate the 𝑖-th sample in the 𝑘-th group, denoted by 𝑥𝑘𝑖, we first draw 𝑧𝑘𝑖 from 𝜋𝑘 and use the
corresponding component 𝜑𝑘𝑧𝑘𝑖

to generate the sample.

This formulation can be expressed using the DSL as below:

1 @model HierarchicalDP{B, G} begin
2 @constant m::Int # the number of groups
3 @constant ns::Vector{Int} # the number of samples in each group
4 @hyperparam alpha::Float64 # the base concentration
5 @hyperparam gamma::Float64 # the group specific concentration
6

7 # for D0
8 pi0 ~ StickBreak(alpha)
9 for j = 1 : Inf

10 psi[j] ~ B
11 end
12

13 # each group
14 for k = 1 : m
15 pi[k] ~ StickBreak(gamma)
16

17 # Dk
18 for t = 1 : Inf
19 u[k][t] ~ pi0
20 phi[k][t] = psi[u[k][t]]
21 end
22

23 # samples
24 for i = 1 : ns[k]
25 z[k][t] ~ pi[k]
26 x[k][i] ~ G(phi[z[k][t]])
27 end
28 end
29 end

3.3 Gaussian Processes

Gaussian process (GP) is another important stochastic process that is widely used in Bayesian modeling. Formally, a
Gaussian process is defined to be a a function-valued distribution 𝑋𝑡 : 𝑡 ∈ 𝑇 , where 𝑇 can be arbitrary domain, such

3.3. Gaussian Processes 21

OpenPPL Documentation, Release 0.1.0

that any finite subset of values in 𝑋𝑡 is normally distributed. A Gaussian process is characterized by a mean function
𝜇 : 𝑇 → 𝑅 and a positive definite covariance function 𝜅 : 𝑇 × 𝑇 → 𝑅. The covariance function is typically given in
a parametric form. The following is one that is widely used

𝜅(𝑠, 𝑡; 𝜃) = 𝜃0𝛿𝑠,𝑡 + 𝜃1 exp(−𝜃2(𝑠− 𝑡)2)

In many application, the GP is considered to be hidden, and observations are a noisy transformation of the samples
generated from the GP, as

𝑔 ∼ 𝐺𝑃 (𝜇, 𝜅)

𝑥𝑖 ∼ 𝐵, 𝑦𝑖 ∼ 𝐹 (𝑔(𝑥𝑖)), 𝑖 = 1, . . . , 𝑛

The following model specification describes this model.

1 @model TransformedGaussProcess{B, F} begin
2 @constant n::Int # the number of observed samples
3

4 # define mean and covariance function
5 @param theta::Float^3
6 mu(x) = 0.
7 kappa(x, y) = theta[1] * delta(x, y) + theta[2] * exp(- theta[3] * abs2(x - y))
8

9 # GP
10 g ~ GaussianProcess(mu, kappa)
11

12 # samples
13 for i = 1 : n
14 x[i] ~ B
15 y[i] ~ F(g[x[i]])
16 end
17 end

The GaussianProcess distribution here is a high-order stochastic function, which takes into two function argu-
ments and generates another function. This is readily implementable in Julia, where functions are first-class citizens
like in many functional programming languages.

22 Chapter 3. Nonparametric Models

CHAPTER 4

The Inference Framework

The diagram below outlines the overall architecture of the inference framework.

The entire process of generating inference codes from model and query specification consists of four stages:

1. The @model macro will convert a model specification into a model class, of which the internal representation
is a factor graph.

2. The @query macro will reduce the factor graph based on the query. The reduction may involve following steps:

(a) Simplify factors by absorbing known variables. For example, a second-order factor (i.e. a factor with two
arguments) 𝑓(𝑥, 𝑦) can be reduced to a first-order factor if the value of one variable (say 𝑦) is given.

(b) Eliminate irrelevant variables and factors: variables and factors that do not influence the conditional
distribution of the queried variables can be safely removed. For example, consider a joint distribution
𝑝(𝑥, 𝑦, 𝑧) = 𝑝1(𝑥|𝑧)𝑝2(𝑦|𝑧). When the value of 𝑦 is given, the variable 𝑦 is conditionally independent
from 𝑥. Therefore, the variable 𝑦 can be ignored in the inference for 𝑥.

The macro @query also generates a high-level description of the inference algorithm.

3. An inference compiler will compiles the inference algorithm into low-level Julia codes, taking into account the
computational architecture of the target platform (e.g. CPU cores, GPU, cluster, cloud, etc).

4. Finally, the Julia compiler will emit LLVM instructions, which will then be compiled into native codes by the
LLVM compiler.

Here, we focus on the first two steps, that is, compilation of model and query specifications into inference algorithms.

4.1 Gaussian Mixture Model Revisited

To illustrate the procedure of model compilation, let’s revisit the Gaussian mixture model (GMM). Given a model
specification, the @model macro creates a factor graph, which is a hyper-graph with factors connecting between
variables. The following diagram is the factor graph that represents a GMM with two components.

23

OpenPPL Documentation, Release 0.1.0

In this graph, each sample is associated with two factors, a mixture factor that connects between observed
samples, components, and component indicator 𝑧𝑖, and a factor that specifies the prior of each component indicator.
These two factors were directly specified in the model specification. In the model learning query, the data x are given.
Therefore the order of each mixture factor is reduced from 2𝐾 + 2 to 2𝐾 + 1.

The most widely used learning algorithm for this purpose is Expectation Maximization, which comprises three updat-
ing steps, as outlined below.

• Update the poterior probabilities of 𝑧𝑖 conditioned on prior 𝜋, component parameters (𝜇𝑘,Σ𝑘), and the corre-
sponding observed sample 𝑥𝑖, as

𝑞𝑖(𝑘) := 𝑝(𝑧𝑖 = 𝑘|𝜋, 𝜃, 𝑥𝑖) ∝ 𝜋(𝑘)𝒩 (𝑥𝑖;𝜇𝑘,Σ𝑘)

= exp (log 𝜋(𝑘) + log𝒩 (𝑥𝑖;𝜇𝑘,Σ𝑘))

This can be interpreted as an integration of a message from the prior factor (that is, log 𝜋(𝑘)) and a
message from the corresponding mixture factor (that is, log𝒩 (𝑥𝑖;𝜇𝑘,Σ𝑘)). Here, log𝒩 (𝑥𝑖;𝜇𝑘,Σ𝑘)
denotes the pdf at 𝑥𝑖 with respect to a Gaussian component.

• Update the maximum likelihood estimation of 𝜋, as

𝜋(𝑘) =
1

𝑛

𝑛∑︁
𝑖=1

𝑝(𝑧𝑖 = 𝑘) =
1

𝑛

𝑛∑︁
𝑖=1

exp(log 𝑞𝑖(𝑘))

This can be interpreted as a computational process that combines messages from each of 𝑧𝑖 (that is,
log 𝑞𝑖(𝑘)).

• Update the maximum likelihood estimation of component parameters 𝜇𝑘 and Σ𝑘, as

𝜇𝑘 =

(︃
𝑛∑︁

𝑖=1

𝑞𝑖(𝑘)𝑥𝑖

)︃(︃
𝑛∑︁

𝑖=1

𝑞𝑖(𝑘)

)︃−1

Σ𝑘 =

(︃
𝑛∑︁

𝑖=1

𝑞𝑖(𝑘)(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇

)︃(︃
𝑛∑︁

𝑖=1

𝑞𝑖(𝑘)

)︃−1

24 Chapter 4. The Inference Framework

OpenPPL Documentation, Release 0.1.0

Again, this is also a specific way that combines messages from each of the mixture factors associated with
them.

The analysis above shows that the E-M algorithm can be viewed as a message-passing scheme that iteratively update
the states associated with each variable by exchanging messages between factors and variables. Actually, the message-
passing scheme is a very general paradigm. Many widely used inference algorithms, including mean-field based
variational inference, belief propagation, expectation propagation, Gibbs sampling, and Hamiltonian Monte Carlo,
can be implemented as certain forms of message passing schemes.

4.2 Inference via Message Passing

Generally, a message passing procedure consists of several stages:

1. Initialize the states associated with each variable. Depending on the chosen algorithm, the states associated
with a variable can be in differen forms. For example, for a discrete variable, its associated state can be a value
(in Gibbs sampling or maximum-likelihood estimation), variational distribution (in variational inference), or a
marginal distribution (in belief propagation or expectation propagation).

2. Iteratively invoke the following steps until convergence or other termination criteria are met.

(a) update the message from a factor to some of its incident variables (based on updated status of other incident
variables).

(b) update variable states based on incoming messages.

3. Compute queried quantities based on variable states. For example, if a Gibbs sampling algorithm is used, the
expectation of a variable can be approximated by the sample mean.

It is possible to generate such an inference procedure according to the structure of the factor graph. However, there
remains several challenges to be addressed:

1. Some intermediate quantities may be used in the computation of several different messages. For example,∑︀𝑛
𝑖=1 𝑞𝑖(𝑘) appears in multiple updating formulas for GMM. It is desirable to identify these quantities and

avoid unnecessary re-computation of the same value.

2. Each message depends on the states of several variables, while the states of a variable may depend on several
messages. A message/variable state only needs to be updated when its depending values have changed. To
identify whether a variable/message needs to be updated, a natural idea is to build a dependency graph, where
each node corresponds to either a variable state or a message. By time-stamping each node, it is not difficult to
see whether a node can be updated by looking at the time-stamps of each neighboring nodes.

3. Updating steps can be scheduled in numerous ways. Poor scheduling may result in slow convergence. Therefore,
deriving a reasonable schedule is also important to achieve high efficiency.

4.2. Inference via Message Passing 25

	Basics
	Terminologies
	Getting Started: Gaussian Mixture Model
	Generic Specification: Finite Mixture Model
	Queries

	More Examples
	Latent Dirichlet Allocation
	Hidden Markov Model
	Markov Random Fields
	Conditional Random Fields
	Deep Boltzmann Machines

	Nonparametric Models
	Dirichlet Process Mixture Model
	Hierarchical Dirichlet Processes
	Gaussian Processes

	The Inference Framework
	Gaussian Mixture Model Revisited
	Inference via Message Passing

